Rules for Exponents & Radicals

If n is a positive integer greater than 1 and both a and b are positive real numbers, then:

Rule	Example	Example
$a^m \bullet a^n = a^{m+n}$	$\begin{array}{c} x^2 \bullet x^3 \Longrightarrow (x \circ x) \cdot (x \cdot x \cdot x) \\ x^{2+3} & \times x \cdot x \cdot x \cdot x \cdot x \\ x^5 & \times 5 \end{array}$	$3^{24} \cdot 3^5 = 3^{24+5}$ $= 3^{29}$
$(a^m)^n = a^{m \cdot n}$	$(x^{2})^{3} \Rightarrow x^{2} \cdot x^{2} \cdot x^{2}$ $x^{2} \cdot 3 \qquad (x \cdot x) \cdot (x \cdot x)^{p} \cdot (x \cdot x)$ $x^{b} \qquad x^{b}$	$(4^3)^8 = 4^{3 \cdot 8}$ $= 4^{24}$
$(ab)^n = a^n \cdot b^n$	$(xy)^{3} \Rightarrow xy \cdot xy \cdot xy$ $x^{3}y^{3} \qquad (x \cdot x \cdot x)(y \cdot y \cdot y)$ $x^{3}y^{3} \qquad (x \cdot x \cdot x)(y \cdot y \cdot y)$	$(2b^3)^5 = 2^5(b^3)^5$ = 32 b 3.5 = 32 b 15
$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{x}{y}\right)^4 \Rightarrow \frac{\times}{y} \cdot \frac{\times}{y} \cdot \frac{\times}{y} \cdot \frac{\times}{y}$	$\left(\frac{2t}{5}\right)^3 = \frac{(2t)^3}{5^3} = \frac{2t^3}{5^3} = \frac{2t^3}{125}$
$\frac{a^m}{a^n} = a^{m-n}$	$\frac{x^5}{x^3} \Rightarrow \underbrace{x \times x \times x}_{x^2}$	$\frac{2^{52}}{2^{21}} = 2^{52-21}$ $= 2^{31}$
$a^{-n} = \frac{1}{a^n}$	y vnbo multiplying by x x x x (inverse of x is x)	$\left(\frac{5}{7}\right)^2 = \left(\frac{7}{5}\right)^2 = \frac{7}{5^2}$ $= \frac{49}{25}$
$\sqrt[n]{a^n} = 0$	$\sqrt[4]{x^4} \Rightarrow \sqrt[4]{\times \times \times \times \times}$	√64 = √26 = 2
$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	$\sqrt[3]{8x^3} = \sqrt[3]{2^3 \cdot x^3}$ = $\sqrt[3]{2^2 \cdot \sqrt[3]{x^3}} = 2x$	⁵ √243·1024 = ₹3 ⁵ · 5√2 = 3 · 4 = 1
$\sqrt[n]{\frac{a}{b}} = \sqrt[n]{a}$	$\sqrt[4]{\frac{x^4}{16}} = \frac{\sqrt[4]{x^4}}{\sqrt[4]{2^4}} = \frac{\times}{2}$	$\sqrt[3]{\frac{27}{125}} = \sqrt[3]{3^3} = \frac{3}{5}$
$a^{1/n} = \sqrt[n]{a}$	$x^{\frac{1}{3}} = \sqrt[3]{x}$ splitting a multipli into smaller inte	$625^{1/4} = \sqrt[4]{625} = \sqrt[4]{5}$