Justifications for Proofs			
IF...	THEN	Justification	
Parallel ($\\|$)	Lines have the same slope	Definition of Parallel	
Perpendicular (\perp)	Lines intersect to form a 90° angle	Definition of Perpendicular	
Parallelogram	Quadrilateral w/ BOTH pairs of opposite sides parallel	Definition of Parallelogram	
Rectangle	Quadrilateral w/ four right angles	Definition of Rectangle	
Square	Quadrilateral w/ four right angles AND all sides equal lengths	Definition of Square	
Rhombus	Quadrilateral w/ all sides equal lengths	Definition of Rhombus	
Trapezoid	Quadrilateral w/ only ONE pair of parallel sides	Definition of Trapezoid	
Midpoint	Point that splits a segment into $2 \cong$ segments	Definition of Midpoint	
Bisect	Cuts an object (angle or segment) into $2 \cong$ parts	Definition of Bisect	
Isosceles Triangle		Definition of Isosceles	
Equilateral	All sides are \cong	Definition of Equilateral	
	$(\operatorname{leg\# 1})^{2}+(\text { leg\#2 })^{2}=(\text { hypotenus e })^{2}$	Pythagorean Thm	

IF...	THEN	Justification
$a=b \& b=c$	$a=c$	Substitution Property
$\stackrel{\bullet}{A} \quad B \quad C$	$A B+B C=A C$	Segment Addition
$C \stackrel{\Gamma}{\leftarrow}$	$\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle \mathrm{BAC}$	Adjacent \angle Addition
$\cong \Delta s$	\cong parts	Corresponding parts of $\cong \Delta s$ are \cong
$\stackrel{1}{\stackrel{1}{2}}$	$\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$	Linear Pair
$\stackrel{\nwarrow}{\stackrel{\Gamma}{3}}$	$\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$	Adjacent $\angle s$ that form a straight \angle
	$\overline{A B} \cong \overline{A B}$	Reflexive Property (Also works for a SHARED \angle)
2	$\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$	\triangle Sum Thm
		Vertical \angle Thm
	$m \angle 2=m \angle 1+m \angle 3$	Exterior \angle Thm
$\begin{array}{\|r\|} \hline 4 \\ \hline \end{array}$	$m \angle 1+m \angle 2+m \angle 3+m \angle 4=360^{\circ}$	Sum of the $\angle s$ in a quadrilateral is 360°
	$A C=B C$	Points on the perpendicular bisector of a segment are equidistant to the segment's endpoints

