Justifications for Proofs

IF	THEN	Justification
Parallel ()	Lines have the same slope	Definition of Parallel
Perpendicular	Lines intersect to form a 90° angle	Definition of Perpendicular
(⊥) Parallelogram	Quadrilateral w/ BOTH pairs of opposite sides parallel	Definition of Parallelogram
Rectangle	Quadrilateral w/ four right angles	Definition of Rectangle
Square	Quadrilateral w/ four right angles AND all sides equal lengths	Definition of Square
Rhombus	Quadrilateral w/ all sides equal lengths	Definition of Rhombus
Trapezoid	Quadrilateral w/ only ONE pair of parallel sides	Definition of Trapezoid
Midpoint	Point that splits a segment into 2 \cong segments	Definition of Midpoint
Bisect	Cuts an object (angle or segment) into 2 ≅ parts	Definition of Bisect
Isosceles Triangle	Triangle w/ TWO sides of equal length	Definition of Isosceles
Equilateral	All sides are ≅	Definition of Equilateral
leg #1 hypotenuse leg #2	$(leg#1)^2 + (leg#2)^2 = (hypotenus e)^2$	Pythagorean Thm

IF	THEN	Justification
a = b & b = c	α = c	Substitution Property
A B C	AB + BC = AC	Segment Addition
$C \leftarrow \frac{1}{2} A^{B}$	$m \angle 1 + m \angle 2 = m \angle BAC$	Adjacent ∠ Addition
≅ ∆s	≅ parts	Corresponding parts of $\cong \Delta s$ are \cong
(1/2)	m∠1 + m∠2 = 180°	Linear Pair
$(1)^{2/3}$	m∠1 + m∠2 + m∠3 = 180°	Adjacent ∠s that form a straight∠
B	$\overline{AB} \cong \overline{AB}$	Reflexive Property (Also works for a SHARED ∠)
$\sqrt{\frac{1}{2}}$ 3	m∠1 + m∠2 + m∠3 = 180°	△ Sum Thm
1 1 2 2 3	m∠1 = m∠2	Vertical ∠ Thm
2 3	m∠2 = m∠1 + m∠3	Exterior ∠ Thm
4 1 3 2	$m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 = 360^{\circ}$	Sum of the ∠s in a quadrilateral is 360°
A B B	AC = BC	Points on the perpendicular bisector of a segment are equidistant to the segment's endpoints