End Behavior of Rational Functions

The end behavior of a rational function is determined, in part, by the relationship between

the degrees of the polynomials in the numerator and the denominator.

Let n be the degree of the numerator and d the degree of the denominator, if

	Type of Asymptote	How to find the asymptote
<i>n</i> < <i>d</i>		
n = d		
n > d		

Examples:

1. $f(x) = \frac{x^2 + 10x + 16}{(x+3)(x-2)(x+5)}$	2. $f(x) = \frac{x(x+1)}{(x-7)}$
Asymptote:	Asymptote:
as $x \to -\infty$, $f(x) \to ___$	as $x \to -\infty, f(x) \to ___$
as $x \to \infty$, $f(x) \to ___$	as $x \to \infty$, $f(x) \to ___$
3. $f(x) = \frac{(x+2)(x+1)}{(x-5)(x+71)}$	4. $f(x) = \frac{x(2x-3)}{(3-x)(x+6)}$
Asymptote:	Asymptote:
as $x \to -\infty$, $f(x) \to ___$	as $x \to -\infty, f(x) \to ___$
as $x \to \infty$, $f(x) \to ___$	as $x \to \infty$, $f(x) \to ___$
5. $f(x) = \frac{-3x^2 - 2x - 8}{(x - 4)}$	6. $f(x) = \frac{3x^3}{2x^4+9}$
Asymptote:	Asymptote:
as $x \to -\infty$, $f(x) \to ___$	as $x \to -\infty, f(x) \to ___$
as $x \to \infty$, $f(x) \to ___$	as $x \to \infty$, $f(x) \to $