End Behavior of Rational Functions

The end behavior of a rational function is determined, in part, by the relationship between the degrees of the polynomials in the numerator and the denominator.
Let n be the degree of the numerator and d the degree of the denominator, if

Type of Asymptote	How to find the asymptote	
$n<d$		
$n=d$		
$n>d$		

Examples:

1. $f(x)=\frac{x^{2}+10 x+16}{(x+3)(x-2)(x+5)}$

Asymptote:
as $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
as $x \rightarrow \infty, f(x) \rightarrow$ \qquad
3. $f(x)=\frac{(x+2)(x+1)}{(x-5)(x+71)}$

Asymptote:
as $x \rightarrow-\infty, f(x) \rightarrow$
as $x \rightarrow \infty, f(x) \rightarrow$
5. $f(x)=\frac{-3 x^{2}-2 x-8}{(x-4)}$
Asymptote:
as $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
as $x \rightarrow \infty, f(x) \rightarrow$ \qquad
2. $f(x)=\frac{x(x+1)}{(x-7)}$

Asymptote:
as $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
as $x \rightarrow \infty, f(x) \rightarrow$
4. $f(x)=\frac{x(2 x-3)}{(3-x)(x+6)}$

Asymptote:
as $x \rightarrow-\infty, f(x) \rightarrow$
as $x \rightarrow \infty, f(x) \rightarrow$
6. $f(x)=\frac{3 x^{3}}{2 x^{4}+9}$

Asymptote:
as $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
as $x \rightarrow \infty, f(x) \rightarrow$

