Graphing and Writing Polynomial Functions

End Behavior	Positive Leading Coefficient	Negative Leading Coefficient
Odd Degree	as $x \to -\infty$, $f(x) \to $	as $x \to -\infty$, $f(x) \to $
Polynomial	as $x \to \infty$, $f(x) \to $	as $x \to \infty$, $f(x) \to ___$
Even Degree	as $x \to -\infty$, $f(x) \to ___$	as $x \to -\infty$, $f(x) \to ___$
Polynomial	as $x \to \infty$, $f(x) \to ___$	as $x \to \infty$, $f(x) \to ___$

Fundamental Theorem of Algebra: Any polynomial of *n* degree has *n* roots.

To sketch the graph of a polynomial, determine the end behavior, find all of the roots (including multiplicities and non-real roots), and find the y-intercept.

Determine the function that fits the graph.

