Graphing and Writing Polynomial Functions

End Behavior	Positive Leading Coefficient	Negative Leading Coefficient
Odd Degree	as $x \rightarrow-\infty, f(x) \rightarrow-$	as $x \rightarrow-\infty, f(x) \rightarrow-$
Polynomial	as $x \rightarrow \infty, f(x) \rightarrow-$	as $x \rightarrow \infty, f(x) \rightarrow-$
Even Degree	as $x \rightarrow-\infty, f(x) \rightarrow-$	as $x \rightarrow-\infty, f(x) \rightarrow-$
Polynomial	as $x \rightarrow \infty, f(x) \rightarrow-$	as $x \rightarrow \infty, f(x) \rightarrow$

Fundamental Theorem of Algebra: Any polynomial of n degree has n roots.
To sketch the graph of a polynomial, determine the end behavior, find all of the roots (including multiplicities and non-real roots), and find the y-intercept.
$P(x)=x(x+2)^{2}\left(x^{2}+9\right)$
Type:
End behavior:
y -intercept: x -intercepts:

$f(x)=-3(x-4)^{2}(x+5)(x+1)$
Type:
End behavior:
y -intercept: x -intercepts:

Determine the function that fits the graph.

