Long IDivision of Polynomials

Recall the division algorithm: $\frac{P(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}$
Determine $\frac{P(x)}{d(x)}$. If $d(x)$ is not a factor express your answer using the division algorithm. If $d(x)$ is a factor, then rewrite $P(x)$ in completely factored form.

1. $P(x)=2 x^{4}-3 \mathrm{x}^{3}+2 x-5$
$\& \mathrm{~d}(x)=x+1$

Since the
We can also rewrite $\mathrm{P}(\mathrm{x})$ as $P(x)=q(x) \bullet d(x)+r(x)$
Rewrite $\mathrm{P}(\mathrm{x})$ for the example above.
remainder is
$\mathrm{x}+1$ \qquad
factor.
2. $P(x)=x^{3}+2 x^{2}-4 x-8$ $\& \mathrm{~d}(x)=x+2$
3. $P(x)=x^{3}-4 x^{2}-7 x+10$
$\& \mathrm{~d}(x)=x-1$

