Inverse of a Function

An inverse of a function is the relation formed when _____

_____ If the inverse of a

function is itself a function, it is then called an _____

Examples:

Given the graph of the function, graph the inverse.

If this were represented in a table:

x	f(x)	x	$f^{-1}(x)$
-1	1		
1	2		
-3	0		
-7	-2		
5	4		

Find the equation of the inverse function.

$$f(x) = \frac{1}{2}(x+5) - 1$$

Inverse of a Function

An inverse of a function is the relation formed when the independent variable is

exchanged with the dependent variable.

_____ If the inverse

of a function is itself a function, it is then called an ______INVERSE FUNCTION

Examples:

Given the graph of the function, graph the inverse.

- Reflection over the line *y* = *x*
- $(x, y) \rightarrow (y, x)$

If this were represented in a table:

Find the equation of the inverse function.

$$f(x) = \frac{1}{2}(x+5) - 1$$

Inverse:
$$x = \frac{1}{2}(y+5) - 1$$
$$+1 + 1 + 1$$
$$x+1 = \frac{1}{2}(y+5)$$
$$2(x+1) = y+5$$
$$-5 + -5$$
$$2(x+1) - 5 = y$$
$$f^{-1}(x) = 2(x+1) - 5$$