Inverse of a Function

An inverse of a function is the relation formed when \qquad
\qquad If the inverse of a
function is itself a function, it is then called an \qquad .

Examples:

Given the graph of the function, graph the inverse.

If this were represented in a table:

x	$f(x)$
-1	1
1	2
-3	0
-7	-2
5	4

x	$f^{-1}(x)$

Find the equation of the inverse function.

$$
f(x)=\frac{1}{2}(x+5)-1
$$

Inverse of a Function

An inverse of a function is the relation formed when the independent variable is exchanged with the dependent variable. \qquad If the inverse
of a function is itself a function, it is then called an INVERSE FUNCTION

Examples:

Given the graph of the function, graph the inverse.

- Reflection over the line $y=x$
- $(x, y) \rightarrow(y, x)$

If this were represented in a table:

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$			
-1	1			
1	2			
-3	0			
-7	-2			
5	4	\quad	\boldsymbol{x}	$\boldsymbol{f}^{-1}(\boldsymbol{x})$
:---:	:---:			
1	-1			
2	1			
-2	-3			
4	5			

Find the equation of the inverse function.

$$
f(x)=\frac{1}{2}(x+5)-1
$$

Inverse:

$$
\begin{gathered}
x=\frac{1}{2}(y+5)-1 \\
+1 \\
x+1=\frac{1}{2}(y+5) \\
2(x+1)=y+5 \\
-5 \quad-5 \\
2(x+1)-5=y \\
f^{-1}(x)=2(x+1)-5
\end{gathered}
$$

