Completing the Square

Given an expression in the form $a x^{2}+b x+c$ where $a \neq 0$, this is the step-by-step process for completing the square to write the expression in vertex form.

Description	$\frac{\text { Algebra }}{a x^{2}+b x+c}$
1. Group variable terms away from the constant.	$\left(a x^{2}+b x\right)+c$
2. Factor 'a' out of the two terms in the parentheses.	$a\left(x^{2}+\frac{b}{a} x\right)+c$
3. Add $\left(\frac{1}{2} \bullet \frac{b}{a}\right)^{2}$ inside the parentheses, but this means keeping it the same by subtracting $a \bullet\left(\frac{b}{2 a}\right)^{2}$ from the constant.	$a\left(x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}\right)+c-a\left(\frac{b}{2 a}\right)^{2}$
4. Rewrite the expression in vertex form.	$a\left(x+\frac{b}{2 a}\right)^{2}+\left(c-a\left(\frac{b}{2 a}\right)^{2}\right)$
Example: Complete the square to write in vertex form $A(x)=3 x^{2}+12 x+17$	

