Transformation of Functions

If you add a number to or subtract a number from an entire function, it causes a \qquad
\qquad of the original function. Given some function $f(x), g(x)=f(x)+k$ is known as the \qquad form of $g(x)$. The constant k is not grouped with x, so k affects the \qquad , or \qquad , of the original function. If the value of $k<0$, the graph of $g(x)$ would be the same as the graph of $f(x)$, just \qquad k units. If the value of $k>0$, the graph of $g(x)$ would be the same as the graph of $f(x)$, just k units.

Examples:

1. Use the given form to write the equation for $\mathrm{g}(\mathrm{x})$ in translation and slope-intercept form.

$$
f(x)=-\frac{1}{2} x+3
$$

Translation form: \qquad
Slope-Intercept form: \qquad
3. If $f(x)=2(3)^{x-2}$ and $g(x)=f(x)-5$. then $g(x)=$ \qquad -.
2. Graph the functions, if $f(x)=3(x+1)-5$ and $g(x)=f(x)+4$. Then simplify $g(x)$ into slope intercept form.

Slope-Intercept form: \qquad
3. If $h(x)=4 x+5$ and $k(x)=h(x)-3$.
then $k(x)=$ \qquad .

