Solving Linear Systems by Elimination Method
Sometimes the Substitution Method is awkward or tedious. Another way to solve systems of equations is to eliminate one variable. This is known as the ELIMINATION METHOD.

1. $2 x+3 y=8$
$5 x-3 y=-1$

- Look for \qquad coefficients of either x or y.
\bullet \qquad the equations together.
- \qquad for the remaining variable.
- Remember that the solution must be a \qquad (\qquad
\qquad).
- \qquad this value into one of the \qquad equations.
- Solve for the \qquad variable.
- Write your solution as a \qquad .
$5 x+2 y=6$
$-3 x-4 y=2$

3. $3 x+6 y=12$
$4 x+7 y=11$
\qquad .

Solving Linear Systems by Elimination Method
Sometimes the Substitution Method is awkward or tedious. Another way to solve systems of equations is to eliminate one variable. This is known as the ELIMINATION METHOD.

1. $2 x+3 y=8$
 $5 x-3 y=-1$

- Look for \qquad coefficients of either x or y . (You may need to multiply one or both equations!)
- Add the equations together.
(This should ELIMINATE one variable...if not check your work!)
- Solve for the remaining variable.
- Remember that the solution must be a point (x, y).
- Substitute this value into one of the __original__equations.
- Solve for the \qquad remaining \qquad variable.
- Write your solution as a \qquad point .

3. $3 x+6 y=12$
$4 x+7 y=11$
