Triangle Congruence Properties

Need \qquad corresponding pairs of congruent parts to guarantee triangles are congruent!

Side-Angle Relationship	Picture	Guarantees Congruence?
SSS SIDE-SIDE-SIDE Three pairs of congruent sides		
SAS SIDE-ANGLE-SIDE Two pairs of congruent sides and one pair of congruent angles (and the angles are between the pairs of sides)		
ASA ANGLE-SIDE-ANGLE Two pairs of congruent angles and one pair of congruent sides (and the sides are between the pairs of angles)		
AAS (or SAA) ANGLE- ANGLE-SIDE Two pairs of congruent angles and one pair of congruent sides (but the sides are NOT between the pairs of angles)		
SSA (or ASS) Two pairs of congruent sides and one pair of congruent angles (but the angles are NOT between the pairs of sides)		NO More than one triangle is possible.
AAA Three pairs of congruent angles		NO There is no guarantee the corresponding sides are congruent.

More on Triangle Congruence

Once we find three corresponding pairs of congruent parts to \qquad
\qquad , then we know \qquad corresponding parts of those congruent triangles are \qquad !

Using SAS example from "Triangle Congruence Properties" Entry:
Before, we determined that:
$\overline{A C} \cong \overline{X Z}$

$\angle C \cong \angle Z$
$\overline{B C} \cong \overline{Y Z}$
so, $\triangle A B C \cong \triangle X Y Z$ by SAS.
Since the triangles are guaranteed to be congruent,
then we can now guarantee that \qquad ,
\qquad , and \qquad because .

A few additional things may come up when trying to prove triangles congruent:

- Sometimes two triangles can SHARE a side. Even if they are not marked, these pieces can be guaranteed congruent because anything is congruent to ITSELF. In math, we call this the \qquad .
- Sometimes in order to be clear about which specific angle we are referring to, we need to use a \qquad letter name instead of a single letter. This is necessary when you have more than one angle with the same \qquad .

Example: Is $\triangle M A H \cong \triangle T A H ?$

There are two pieces marked:
$\overline{M A} \cong \overline{T A}$
(To say $\angle A \cong \angle A$ would not be correct because
they are NOT the exact same piece!)
Only two congruent corresponding parts is NOT enough information to \qquad !
But, we also know \qquad by \qquad .
So we can conclude \qquad by \qquad .

