Triangle Congruence Properties Need <u>at least THREE</u> corresponding pairs of congruent parts to guarantee triangles are congruent! | parts to guarantee triangles are congruent! | | | |---|-----------|---| | Side-Angle Relationship | Picture | Guarantees Congruence? | | SSS SIDE-SIDE-SIDE Three pairs of congruent sides | B C K | ABCELLMK by SSS | | SAS SIDE-ANGLE-SIDE Two pairs of congruent sides and one pair of congruent angles (and the angles are between the pairs of sides) | C B Z W X | BCYTZ GIVEN
LCYLZ DACABY AZXY by SAS | | ASA ANGLE-SIDE-ANGLE Two pairs of congruent angles and one pair of congruent sides (and the sides are between the pairs of angles) | C B Y | LBELY LASLX GIVEN ABELY ABELY ABELY ABELY ABELY ABLY ABLY ABACE DYXZ by ASA | | AAS (or SAA) ANGLE- ANGLE-SIDE Two pairs of congruent angles and one pair of congruent sides (but the sides are NOT between the pairs of angles) | A C C X | LARCY
LBRIZZ
ACRYX
DABCRAYZX by AAS | | SSA (or ASS) Two pairs of congruent sides and one pair of congruent angles (but the angles are NOT between the pairs of sides) | B C D 45° | More than one triangle is NO Congruent) More than one triangle is possible. Need more info | | AAA Three pairs of congruent angles | B C R | There is no guarantee the corresponding sides are congruent. | | | | congruent? | ## **More on Triangle Congruence** | Once we find three corresponding pairs of congruent parts to prove two triangles are CONGRUENT, then we know ALL SIX corresponding parts of those congruent triangles are congruent! | |--| | Using SAS example from "Triangle Congruence Properties" Entry: | | Before, we determined that: $\overline{AC} \cong \overline{XZ}$ $\angle C \cong \angle Z$ $\overline{BC} \cong \overline{YZ}$ so, $\triangle ABC \cong \triangle XYZ$ by SAS. Since the triangles are guaranteed to be congruent, | | then we can now guarantee that $\angle A \cong \angle X$, $\angle B \cong \angle Y$, and $AB \cong XY$ because | | s->= parts) congruent triangles have congruent | | A few additional things may come up when trying to prove triangles congruent: | | Sometimes two triangles can SHARE a side. Even if they are not marked, these pieces can be guaranteed congruent because anything is congruent to ITSELF In math, we call this the Reflexive Property. Sometimes in order to be clear about which specific angle we are referring to, we need to use a Boldered letter name instead of a single letter. This is necessary when you have more than one angle with the same Vertex. | | Example: Is $\triangle MAH \cong \triangle TAH$? There are two pieces marked: $\overline{MA} \cong \overline{TA}$ There are two pieces marked: (To say $\angle A \cong \angle A$ would not be correct because they are NOT the exact same piece!) Only two congruent corresponding parts is NOT enough information to \overline{AVA} and $\overline{CC} \cong \overline{CC}$ | | But, we also know AH by Reflexive Property | | So we can conclude <u>△MAH≅ △TAH</u> by <u>SAS</u> . |