Factoring Strategies

**Always pull out	if	possible!!!
-------------------	----	-------------

Count the number of terms...this will help determine which factoring strategy to use.

Two terms: Look for special cases!

Difference of Squares $a^2 - b^2$	$16x^2 - 25$	$x^4 - 49$
= (a-b)(a+b)		
Difference of Cubes $a^3 - b^3$	$27x^3 - 64$	$x^6 - 64$
$= (a-b)(a^2 + ab + b^2)$		
Sum of Cubes $a^{3} + b^{3}$ $= (a+b)(a^{2} - ab + b^{2})$	$8x^3 + 125$	$x^3 + 27$

Three terms: Quadratics in standard form or higher order trinomials that can be rewritten in quadratic form.

Leading coefficient = 1	$x^2 + 10x + 21$	$x^4 + 4x^2 - 32$
$x^2 + bx + c$		
factors of c that sum to b (may use diamond problem)		
Leading coefficient ≠ 1	$6x^2 - 11x - 10$	$10x^3 - 68x^2 - 14x$
$ax^2 + bx + c$		
(may use area model with a diamond problem)		

Four terms: Factor by Grouping pairs of terms together

Factor by Grouping pairs of terms together
$$ax^3 + bx^2 + cx + d$$

$$4x^3 + 20x^2 - 3x - 15$$

$$3x^4 - 6x^3 + 15x^2 - 30x$$