Logarithms

A logarithm is an inverse to \qquad . This means that the logarithm is the \qquad to which another fixed number, the \qquad , must be raised to produce the \qquad _.

$$
b^{x}=a \text { means the same as }
$$

In both versions of this equation, there are some restrictions on the components.
Base: \qquad
Exponent: \qquad
Argument: \qquad
Examples:

1. $\log _{3} 27$
2. $\log _{4} \frac{1}{256}$
3. $\log _{27} \frac{1}{9}$
$\begin{array}{ll}\text { Log } & \text { Product Rule: } \\ \text { Rules: } & \log _{b}(z w)=\end{array}$

Quotient Rule:	$\log _{5}\left(\frac{x}{25}\right)$
$\log _{b}\left(\frac{Z}{W}\right)=$	

$\log _{b}\left(\frac{Z}{W}\right)=$	
Power Rule:	$\log _{7}\left(x^{5}\right)$
$\log _{b}\left(z^{w}\right)=$	

