Justifications for Proofs

IF	THEN	Justification
Parallel ()	Lines have the same slope	
Perpendicular (⊥)	Lines intersect to form a 90° angle	
Parallelogram	Quadrilateral w/ BOTH pairs	
Rectangle	Quadrilateral w/ four right angles	
Square	Quadrilateral w/ four right angles AND all sides equal lengths	
Rhombus	Quadrilateral w/ all sides equal lengths	
Trapezoid	Quadrilateral w/ only ONE pair	
Midpoint	Point that splits a segment into 2 \cong segments	
Bisect	Cuts an object (angle or segment) into 2 \cong parts	
Isosceles Triangle	Triangle w/ TWO sides of equal length	
Equilateral	All sides are ≅	
leg #1 hypotenuse leg #2	$(leg#1)^{2} + (leg#2)^{2} = (hypotenus e)^{2}$	

IF	THEN	Justification
a = b & b = c	a = c	
A B C	AB + BC = AC	
$C \leftarrow 1^2 A^B$	m∠1 + m∠2 = m∠BAC	
≅ ∆s	≅ parts	
$\leftarrow 1/2$	m∠1 + m∠2 = 180°	
$ \xrightarrow{ \begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} } $	m∠1 + m∠2 + m∠3 = 180°	
B	$\overline{AB}\cong\overline{AB}$	
$\sqrt{\frac{1}{2}}$ 3	m∠1 + m∠2 + m∠3 = 180°	
	m∠1 = m∠2	
4 3 2		
A B • • • • •		