Use the 4 steps for "area sub-problems":

1. Picture Equation
2. Formulas
3. Simplify
4. Answer (exact and approximate)

PRISMS:

Volume $=($ Area of Base $) \bullet$ Height
Total surface area is the sum of the areas of all faces (or sides)
NOTE: The base is NOT always located on the "bottom" of prisms!!!
The bases of a prism are the two congruent faces that are on opposite sides of the prism, and these two faces are connected by parallelograms, rectangles, or rhombi.

CYLINDERS:

$V=($ Area of Circular Base $) \bullet$ Height

The surface area of a cylinder is the sum of the areas of the top and the bottom base (two circles) and the curved side (a rectangle).

- The bases of a cylinder are equal in area.
- The height of the cylinder is the height of the rectangle.
- The circumference of the cylinder is the length of the rectangle.

PYRAMIDS:

$\mathrm{V}=\frac{1}{3}($ Area of Base $) \bullet$ Height
TSA $=$ sum of the areas of all faces

$\mathrm{V}=\frac{1}{3}\left(10 \begin{array}{l} \\ \hline\end{array}\right) \cdot 12$
$\mathrm{V}=\frac{1}{3}(10 \bullet 10) \cdot 12$
$\mathrm{V}=400 \mathrm{ft}^{3}$
$\operatorname{TSA}=4(\frac{\overbrace{13}}{10})+10 \underset{ }{\square}$
TSA $=4\left(\frac{1}{2} \bullet 10 \bullet 13\right)+(10 \bullet 10)$
TSA $=260+100$
TSA $=360 \mathrm{ft}^{2}$

CONES:

$\mathrm{V}=\frac{1}{3}($ Area of Circular Base $) \bullet$ Height
TSA $=($ Area of Base $)+($ Lateral Surface Area $)$
TSA $=$

$\mathrm{TSA}=\pi r^{2}+\pi r l$

$\mathrm{V}=\frac{1}{3}\left(\pi \bullet 3^{2}\right) \bullet 4$
$\mathrm{V}=12 \pi \mathrm{in}^{3}$
$V \approx 37.70 \mathrm{in}^{3}$

$\mathrm{TSA}=\left(\pi \bullet 3^{2}\right)+(\pi \bullet 3 \bullet 5)$
TSA $=9 \pi+15 \pi$
TSA $=24 \pi$ in 2
TSA $\approx 75.40 \mathrm{in}^{2}$

